Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction.
نویسندگان
چکیده
Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu-M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process.
منابع مشابه
Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis
This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with t...
متن کاملAg dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity.
Dendritic Ag/Au bimetallic nanostructures have been synthesized via a galvanic replacement reaction (GRR) of Ag dendrites in a chlorauric acid (HAuCl4) solution. After short periods of time, one obtains structures with protruding flakes; these will mature into very porous structures with little Ag left over. The morphological, compositional, and crystal structural changes involved with reaction...
متن کاملSynthesis of Au-Pd Bimetallic Nanoflowers for Catalytic Reduction of 4-Nitrophenol
Due to the great potential to improve catalytic performance, gold (Au) and palladium (Pd) bimetallic catalysts have prompted structure-controlled synthesis of Au-Pd nanoalloys bounded by high-index facets. In this work, we prepared Au-Pd bimetallic nanoflowers (NFs) with a uniform size, well-defined dendritic morphology, and homogeneous alloy structure in an aqueous solution by seed-mediated sy...
متن کاملCatalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions
Water-in-oil (w/o) microemulsions were used as a template for the synthesis of monoand bi-metallic nanoparticles. For that purpose, w/o-microemulsions containing H2PtCl6, H2PtCl6 + Pb(NO3)2 and H2PtCl6 + Bi(NO)3, respectively, were mixed with a w/o-microemulsion containing the reducing agent, NaBH4. The results revealed that it is possible to synthesize Pt, PtPb and PtBi nanoparticles of ~3–8 n...
متن کاملAuPd Bimetallic Nanocrystals Embedded in Magnetic Halloysite Nanotubes: Facile Synthesis and Catalytic Reduction of Nitroaromatic Compounds
In this research, a facile and effective approach was developed for the preparation of well-designed AuPd alloyed catalysts supported on magnetic halloysite nanotubes (HNTs@Fe₃O₄@AuPd). The microstructure and the magnetic properties of HNTs@Fe₃O₄@AuPd were confirmed by transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 44 9 شماره
صفحات -
تاریخ انتشار 2015